Boundary Layers in Constrained Plastic Flow: Comparison of Nonlocal and Discrete Dislocation Plasticity
نویسندگان
چکیده
Simple shear of a constrained strip is analyzed using both discrete dislocation plasticity and strain gradient crystal plasticity theory. Both single slip and symmetric double slip are considered. The loading is such that for a local continuum description of plastic flow the deformation state is one of homogeneous shear. In the discrete dislocation formulation the dislocations are all of edge character and are modeled as line singularities in an elastic material. Dislocation nucleation, the lattice resistance to dislocation motion and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. A complementary solution that enforces the boundary conditions is obtained via the finite element method. The discrete dislocation solutions give rise to boundary layers in the deformation field and in the dislocation distributions. The back-extrapolated flow strength for symmetric, double slip increases with diminishing layer thickness, so that a size effect is observed. The strain gradient plasticity theory used here is also found to predict a boundary layer and a size effect. Nonlocal material parameters can be chosen to fit some, but not all, of the features of the discrete dislocation results. Additional physical insight into the slip distribution across the layer is provided by simple models for an array of mode II cracks.
منابع مشابه
Plastic Flow in a Composite: A Comparison of Nonlocal Continuum and Discrete Dislocation Predictions
A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory. Only single slip is permitted in the matrix material. The discrete dislocation results are used as numerical experiments and we explore the extent to which the nonlocal crys...
متن کاملModelling plastic deformation in a single-crystal nickel-based superalloy using discrete dislocation dynamics
Background: Nickel-based superalloys are usually exposed to high static or cyclic loads in non-ambient environment, so a reliable prediction of their mechanical properties, especially plastic deformation, at elevated temperature is essential for improved damage-tolerance assessment of components. Methods: In this paper, plastic deformation in a single-crystal nickel-based superalloy CMSX4 at el...
متن کاملDislocation subgrain structures and modeling the plastic hardening of metallic single crystals
A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the forma...
متن کاملElastic/plastic Buckling Analysis of Skew Thin Plates based on Incremental and Deformation Theories of Plasticity using Generalized Differential Quadrature Method
Abstract In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is presented. The governing equations are derived for the first time based on the incremental and deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is described by the Ramberg-Osgood model. The ranges of plate geometries...
متن کاملA simple and efficient plasticity-fracture constitutive model for confined concrete
A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dil...
متن کامل